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use of the most effective antimicrobials; (b) it may influence the choice of surgical strategies; and (c) it
restrains the therapeutic options to newly labelled antimicrobials with limited experience in PJI.
Objectives: To provide a comprehensive overview of the clinical impact of antimicrobial resistance in
Gram-positive PJI and on current and innovative therapeutic strategies.
Sources: The review is based on PubMed searches for relevant topics, including multiresistant staphylo-
cocci PJI and the discussed specific therapeutic approaches. Given the very few randomized trials in this
setting, discussion is mostly based on observational studies and the experience and opinion of the authors.
Content: Methicillin resistance is an important concern in staphylococcal PJI, especially in coagulase-
negative staphylococci. However, its impact on the outcome is controversial. Conversely, rifampicin
and/or fluoroquinolone resistance are associated with worse prognosis and might be considered when
defining difficult-to-treat pathogens in the PJI setting. There is very little experience with recently
developed anti-Gram-positive antimicrobial in PJI, but evaluations of their antibiofilm activities are
promising, and some of them might represent significant advances regarding antimicrobial tolerance
(such as tedizolid) or pharmacokinetic profiles (such as dalbavancin) during long-term treatment
required for PJI. Evaluation of innovative strategies in this setting is crucial, including repositioning of
current surgical options using local antimicrobial delivery, pharmacokinetic monitoring and modelling to
optimize antimicrobial therapy, suppressive antimicrobial treatment and/or phage-based approaches.
Implications: PJls caused by resistant Gram-positive bacteria—including rifampicin- and/or
fluoroquinolone-resistant staphylococci—may be associated with a poorer prognosis. It is therefore
essential to optimize medical and surgical management, and to find new therapeutic alternatives.
Florent Valour, Clin Microbiol Infect 2025;s:1
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Introduction

Prosthetic joint infection (PJI) is a major complication of
arthroplasty, with an estimated incidence of 1% [1]. Gram-positive
bacteria account for two-thirds of documented infections, mainly
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represented by Staphylococcus aureus and coagulase-negative
staphylococci (CNS) [2]. The worldwide increase in antimicrobial
resistance raises several concerns in the specific field of PJI. First,
the impact of antimicrobial resistance on the outcome remains to
be specifically evaluated. PJl management relies on antimicrobials
chosen for their osteoarticular penetration and antibiofilm activity
[3,4]. For instance, rifampicin is recognized as a cornerstone of
staphylococcal device-associated infection because of its tissue
penetration and activity against staphylococcal biofilms. Fluo-
roquinolones are considered as the best companion molecules of
rifampicin for staphylococcal PJI because of their excellent bone
penetration and lack of drug—drug interaction, and also display
good biofilm activity against Gram-negative pathogens. However,
these drugs are not commonly considered to define multidrug
resistance (MDR). Second, antimicrobials recently marketed for the
treatment of MDR Gram-positive have been approved for skin and
soft-tissue infection (SSTI), with little information on their dosage,
efficacy and tolerance upon prolonged treatment required for PJI,
for which their use is more relevant. Third, apart from consider-
ations related to antimicrobial resistance, current surgical strat-
egies—mainly debridement, antibiotics and implant retention
(DAIR), and one- or two-stage exchanges—are associated with a
global risk of failure of 20% subject to carefully chosen indications
[5], advocating for the implementation of innovative approaches in
selected patients.

This review provides insights into the impact of antimicrobial
resistance on Gram-positive PJI prognosis, and on innovative stra-
tegies to implement for a better outcome of these difficult-to-treat
infections.

Microbiological epidemiology, resistance and prognosis

In a large French cohort (2014—2019) using the national registry
of complex bone and joint infection (BJI) reference centres to gather
11 812 documented PJI, S. aureus (26.3%) and CNS (25.1%) were the
most frequently involved pathogens, streptococci (9.4%) and
enterococci (5.7%) being less represented [2].

MDR staphylococci

Prevalence and evolution of staphylococcal resistance rates vary
significantly across countries, with few international comparative
data regarding specifically PJI isolates. For instance, 2021 data from
the European surveillance of antimicrobial resistance revealed that
among more than 60 000 invasive S. aureus isolates, overall
methicillin-resistance rate was 15.8%, being stable or decreasing in
most countries, but with major variations in prevalence ranging
from 0.9% to 42.9% depending on countries [6]. Similarly, an
important disparity of MRSA prevalence is noted towards PJI iso-
lates depending on countries, with a global trend to diminution in
Europe [7,8]. However, some observational studies showed an in-
crease in MRSA prevalence in other countries, such as the United
States [9]. Methicillin resistance is more frequent in CNS than in
S. aureus, accounting for 59% and 16% of isolates, respectively, in our
reported experience [10]. In a multicentric European study of
Staphylococcus epidermidis PJI treated with DAIR (2007—2017),
resistance rates were 82% for methicillin, 59% for levofloxacin, 57%
for clindamycin, and 51% for cotrimoxazole [11]. Methicillin resis-
tance was found to be more common in early postoperative in-
fections [10,12].

The prognostic impact of methicillin resistance in staphylo-
coccal PJI is debated. In a German retrospective study involving 74
chronic PJI with a two-stages surgical management caused by
S. aureus and S. epidermidis, methicillin-resistant Staphylococcus
epidermidis (MRSE) infection was associated with a lower

eradication rate compared with MSSE [13]. However, this difference
could rely on a baseline difference between patients in the two
groups, MRSE-infected individuals have a significantly higher
American Society of Anesthesiology score (ASA) score and a higher
infection duration. Regarding Methicillin-susceptible Staphylo-
coccus aureus (MSSA) and methicillin-resistant Staphylococcus
aureus (MRSA), some studies showed no differences in PJI outcome
[13,14], whereas others found a higher failure rate for MRSA in-
fections [15,16]. Of note, the overall cost of treatment could also be
higher in cases of methicillin resistance [17].

Beyond methicillin resistance, rifampicin resistance rate was
found to be more frequent in CNS (24.4%) than S. aureus (7.8%) [7],
and has been associated with a poorer outcome of staphylococcal PJI
in several studies [18,19]. Rifampicin has been shown to improve the
prognosis of staphylococcal PJI treated by DAIR, especially when used
in combination with fluoroquinolones [20]. Similarly, quinolone
resistance among S. epidermidis has been associated with a higher
rate of failure in early PJI treated with DAIR [11]. Consequently,
rifampicin and fluoroquinolone resistances might be considered
when defining MDR pathogens in staphylococcal PJI (see Fig. 1).

Other resistant Gram-positive pathogens

A Spanish study involving 444 patients with streptococci PJI
treated by DAIR showed that reduced susceptibility to penicillin (MIC
>0.125 mg/L) was not associated with a higher failure rate [21]. In an
American study including 87 enterococcal PJI, vancomycin-resistant
enterococci were not associated with a poorer outcome [22].

Current antimicrobial options
Oxazolidinones

With a spectrum comprising all Gram-positive pathogens and
good bone penetration, oxazolidinones represent an alternative in
MDR Gram-positive PJI. However, prolonged (>10 days) courses of
linezolid are associated with a risk of haematological and neurological
toxicities [23]. In a review pooling 372 PJI cases treated with linezolid
from 16 studies, an infection control rate of 80% was reported, with a
rate of adverse events of 33% [24]. Of note, the drug—drug interaction
of linezolid with rifampicin is a source of conflicting data regarding
tolerance (with a potential lower rates of anaemia—but not throm-
bocytopenia and neuropathy) and efficacy, some authors reporting a
higher failure rate with this combination [25].

More recently approved for SSTI, tedizolid presents the advan-
tage of a lower toxicity during long-term treatment. It has been
successfully used in a rat model of MRSA and MRSE osteosynthesis-
associated infection [26,27]. Patients with BJIs, a minority of them
with PJI, have been treated with good tolerance, but differing de-
grees of success [28,29].

Long-acting lipoglycopeptides

Dalbavancin and oritavancin are two lipoglycopeptides, active
against most Gram-positive bacteria. Recently approved for SSTI,
their long half-life of 15 and 10 days, respectively, makes them a
more appropriate option for chronic MDR Gram-positive infections
such as PJI.

Dalbavancin demonstrated an acceptable activity against
staphylococcal biofilms especially in combination with rifampicin
[30], and good efficacy in a rat model of sternal MRSA osteomyelitis
[31]. A two-dose regimen of dalbavancin of 1500 mg 1 week apart
provides satisfying bone concentrations for at least 4—6 weeks [32].
A randomized clinical trial compared this two-dose regimen of
dalbavancin with standard of care in osteomyelitis, with similar
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Fig. 1. Management strategies in patients with acute, late acute or haematogenous PJI with an unloosened prosthesis and for whom DAIR is the primary surgical approach. ATBX,
antibiotics; CaSOy, calcium sulphate; DAIR, debridement, antibiotics and implant retention; PJI, prosthetic joint infection; PK, pharmacokinetic; SAT, suppressive antimicrobial

therapy SOC, Standard of Care.

clinical response at 1 year (96%) and an acceptable tolerance [33].
Turning especially to PJI, data are more limited, but pooled results
of cohort studies showed a clinical cure rate of 73% [34]. In situa-
tions necessitating more than 6 weeks of treatment, two injections
of 1500 mg 1 week apart with trough concentration monitoring
and pharmacokinetic (PK) modelling allow for individualized in-
tervals and doses of subsequent injections [35].

In addition to the spectrum of dalbavancin, oritavancin has po-
tential activity against vanA + Enterococcus faecium [36]. Its activity
against staphylococcal and enterococcal biofilms has been described
[37,38]. However, the use of multidose oritavancin in PJI is less
documented [39], and PK guidelines are missing for individualized
long-term administration. To date, the largest series gathered 134 B]I,
including 17.9% with prosthetic material, receiving one dose of 1200
mg followed by 3 or 4 weekly doses of 800 mg [40]. The rate of clinical
success was 80%, but was evaluated at 6 months post-therapy, only.

Anti-methicillin-resistant staphylococci cephalosporins

Ceftaroline and ceftopibrole possess a high affinity to penicillin-
binding proteins associated with methicillin resistance (including
penicillin-binding protein 2a (PBP2a)), making them the only B-
lactams active against methicillin-resistant staphylococci. Ceftaro-
line showed good efficacy in a rabbit model of MRSA PJI in com-
parison to vancomycin [41]. However, the experience of these
molecules in PJI is limited to a few case reports. Additionally, their
broad spectrum including non-Extended-spectrum p-lactamase
(ESBL) Enterobacterales—and Pseudomonas aeruginosa for ceftobi-
prole—might be associated with a significant ecologic impact. Thus,
their use should probably be restricted to polymicrobial infections.

Delafloxacin

Delafloxacin is a new fluoroquinolone that may retain activity
against fluoroquinolone-resistant staphylococci thanks to its dual

targeting of DNA topoisomerase IV and DNA gyrase. In addition, the
expected excellent bone diffusion of fluoroquinolone and the ac-
tivity of delafloxacin against staphylococcal biofilm make it a po-
tential alternative in MDR staphylococci PJI [42]. We recently
compared levofloxacin and delafloxacin minimum biofilm eradi-
cation concentration (MBEC) among two pairs of levofloxacin sus-
ceptible/resistant S. aureus isolates and a collection of ten clinical
strains isolated from BJIs (five S. aureus, five S. epidermidis), showing
significantly lower delafloxacin MBEC, including against most
levofloxacin-resistant isolates (34th European Congress of Clinical
Microbiology and Infectious Diseases, 2024, Barcelona; Abstract
P1131). However, there are no delafloxacin Minimum inhibitory
concentration (MIC) interpretation guidelines for CNS, and two
different breakpoints for S. aureus in SSTI (0.25 mg/L) and other
infections (0.016 mg/L). Using these two breakpoints to screen
collections of levofloxacin-resistant staphylococci BJI isolates, sus-
ceptibility rate drops from 89.1% to 3.9%, only, despite MICs
significantly lower than other fluoroquinolones [43]. To date, very
few clinical cases of PJI treated with delafloxacin-based therapies
have been published [44]. Pending for specific breakpoints and
more extensive data regarding bone penetration, antibiofilm ac-
tivity, tolerance and risk of resistance selection during prolonged
treatment, it can be considered as an alternative in combination
therapy for PJI caused by pathogens resistant to other fluo-
roquinolones and without any other therapeutic options.

‘Anti-biofilm’ molecules

The use of molecules able to penetrate and to remain active in
staphylococcal biofilm is believed to be a determinant of PJI treat-
ment outcome [45]. Rifampicin and daptomycin are the most
potent molecules active against staphylococcal biofilms [3]. Of note,
some in vitro data suggested that other rifamycins, and especially
rifabutin, might even have a better activity against staphylococcal
biofilms [46], and are currently under evaluation in a clinical trial
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(NCT04672525). Regarding daptomycin, its use in combination
with fosfomycin is of growing interest in severe MRSA infections,
and has been positively evaluated in a biofilm infection model and a
retrospective cohort of PJI [47,48]. Afabicin, by targeting the
staphylococcal Fabl enzyme, is the first-in class anti-staphylococcal
drug with antibiofilm activity in vitro [49]. A clinical trial
(NCT03723551) evaluating its safety and efficacy in staphylococcal
BJI is ongoing.

Innovative approaches
Current surgical strategies combined with local antimicrobials

Acute postoperative and acute late haematogenous infections
with unloosened prosthesis are currently managed by DAIR, with
complex determinants of outcome, for which prognostic score-
s—such as KLIC and CRIME-80 scores—have been established
without considering antimicrobial resistance [50]. On the other
hand, patients with chronic infections, prosthesis loosening and/or
at high risk of DAIR failure usually benefit from one-stage or two-
stage exchanges. As discussed previously, S. aureus itself, espe-
cially in case of MDR, might be associated with an increased risk of
failure, especially if rifampicin cannot be used. Thus, the identifi-
cation of MDR Gram-positive pathogen advocates for additional
non-surgical intervention to improve the prognosis of DAIR-treated
patients, and might support a two-stage exchange procedure if the
pathogen is identified before surgery [51]. Some common antibi-
otics (particularly vancomycin and gentamicin) have shown anti-
biofilm effects in vitro and in animal models at high doses. Reaching
such local concentrations with systemic treatment is hampered by
the risk of toxicity but can be obtained through local administration
[52]. In this setting, the SOLARIO clinical trial aims to assess a
treatment strategy that may enable the reduction of systemic
antibiotic use to less than 7 days for patients with orthopaedic
infection for whom local antibiotics are used, in comparison with
standard surgical treatment with prolonged antimicrobial. Partial
results of the trial have been presented, showing no difference in
infection recurrence between the two arms, suggesting a good ef-
ficacy of this local approach [53]. This strategy needs to be evalu-
ated more specifically in patients with MDR Gram-positive PJI, as
there are most of time fewer treatment options and these infections
are frequently more difficult to treat.

In case of two-stage exchange, the use of articulated or static
spacers with antibiotic-loaded polymethylmethacrylate cement is
usually proposed [54]. For cost reasons, vancomycin is frequently
added manually to gentamicin cement, but the required dose, local
PK and mechanical impact of this practice are not well known,
whereas commercial Polymethylmethacrylate (PMMA) cement
delivering gentamicin plus clindamycin or vancomycin is available
[55]. In case of gentamicin and vancomycin resistance, daptomycin
or linezolid impregnated cements could be an alternative for the
spacer, but only commercially available cements can be used for the
prosthesis fixation during the second stage.

In patients with PJI without loosening but with joint effusion as
exclusive clinical sign, a DAIR procedure is frequently proposed. In
such patients, filling the joint cavity with local anti-infectious
agents at the end of the procedure can locally complement the
extensive debridement. To achieve significant concentration over
time in the joint fluid, local antibiotics must be injected locally
several times, or need a carrier that facilitates local delivery [56].
Some authors reported positive experiences of repeated intra-
articular antibiotic infusion following DAIR, using the post-
operative drainage tube or a dedicated catheter placed during
surgery [57]. However, those procedures are theoretically associ-
ated with a risk for catheter crushing and superinfection. There is

also a growing interest in biodegradable calcium sulphate beads
loaded with antibiotics. However, the major indication of such
devices is osteomyelitis, as they fill the dead space and promote
bone modelling, but as they are biodegradable and do not contain
hydroxyapatite, they could also be used as antibiotic carriers in the
joint cavity after a DAIR [58].

Bacteriophages and lysins

Phage therapy consists in the use of bacteriophages that are
natural viruses specifically targeting a bacterial species. They could
be purified and produced as a medication for clinical use [59].
Phages have synergistic activity with antibiotics and antibiofilm
effect in vitro [60]. Some patients with complex S. aureus PJI have
been treated recently as compassionate use [61,62]. Few
pharmaceutical-grade phages targeting other Gram-positive spe-
cies are available, and experience is rapidly growing, particularly in
France [62]. Some clinical trials are ongoing, especially using
staphylococcal phages during DAIR procedure (NCT05369104). Of
note, phage therapy can also be administrated intravenously or
locally under scopy or sonography after the surgery [62].

Lysins are phage-derived enzymes that could be used as a new
medication. Some engineered enzymes are in development, and
interestingly, their spectrum of action includes more largely CNS.
Few patients were treated as compassionate use with such type of
enzymes [63].

Pharmacokinetics (PK) monitoring and modelling to optimize drug
exposure

Therapeutic drug monitoring (TDM) consists in measuring anti-
biotic concentration to adjust drug dosage and ensure sufficient
concentration at the infection site while limiting overexposure. TDM
is relevant in PJI, especially in the case of high MICs, to take into
account parameters altering antibiotic PKs, including: (a) the low
antibiotic bone penetration, with median bone/serum concentration
ratios ranging from 0.2 (B-lactams) to 0.5 (quinolones, linezolid) [4];
and (b) the high prevalence of older patients with comorbidities,
including renal impairment and obesity, and who are co-
administered other drugs. In addition, PKs modelling improves the
interpretation of measured concentrations, permitting to derive
quantities such as the area under the curve (AUC), and compute an
individualized dosage. This approach is known as modelled-informed
precision dosing [64]. However, this approach is limited by the
absence of consideration of specific pathophysiological features of PJl,
including antibiofilm activity (MBEC) that is not routinely accessible,
even if it has not been correlated with clinical success to date [45].

The primary objective of TDM is to avoid underexposure and
minimize the risk of failure. In the absence of specific PKs target for
PJI, reaching therapeutic concentrations in plasma while consid-
ering the MIC of the pathogen and bone/serum concentration ratio
might be appropriate. For example, a trough concentration
>4—5 x MIC in plasma may be adequate for B-lactams, considering
their average bone penetration of 20%. PK targets defined as un-
bound concentration can also be used, when available. For example,
as daptomycin PK target is free AUC over the MIC (fAUC/MIC),
achieving the PK target in plasma should be associated with
effective concentrations in bone tissue as bone/serum ratio and free
fraction of the drug in blood are similar (about 10%).

The other objectives of TDM are: (a) to avoid overexposure and
toxicity, especially in case of high MCls, with drugs with narrow
therapeutic margin and concentration-dependent adverse re-
actions; (b) to manage drug—drug interactions, especially for
rifampicin which decreases concentrations of co-administered
antibiotics such as clindamycin or linezolid [25,65]; (c) to design
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individualized dosage regimens with adjustment of the dose and
dosing interval of parenteral suppressive therapy, such as Subcu-
taneous (SC) B-lactams for which modelled-informed precision
dosing permitted to increase the dosing interval from daily to thrice
or twice weekly, or for dalbavancin [66]; and (d) to help monitoring
patients' adherence to treatment, even if trough concentrations
only reflects the intake of the last doses, and may be low even when
adherence is good for drugs with short half-life.

Suppressive antimicrobial therapy

Suppressive antimicrobial therapy (SAT), consisting in exten-
ded—and sometimes life-long—antibiotic treatment, is increasingly
used in reference centres. The indication must be driven by the risk
of failure related to: (a) the general outcome determinants, eventu-
ally guided by clinical scores [50]; (b) the presence of a difficult-to-
treat pathogens; (c) a surgical strategy unlikely to achieve com-
plete infectious source control (such as DAIR for a chronic infection),
chosen because of the anaesthesiology risk or for functional reasons;
and (d) the treatability and consequences of a potential relapse. The
heterogeneity of the literature makes recommendations difficult, but
reported rates of favourable outcomes range between 60% and 93%
[67]. There are few data regarding the use of recently developed
antimicrobials as SAT. The TediSAT cohort described 17 patients using
tedizolid as SAT with a median duration of 6 months, with no severe
adverse event [68]. The use of long-acting lipoglycopeptides guided
by TDM is of particular interest in this indication [69].

Conclusions

MDR Gram-positive PJIs are mainly represented by methicillin-
resistant staphylococci, but resistance to rifampicin and/or fluo-
roquinolones should also be included to define difficult-to-treat
pathogens. Antimicrobial resistance significantly impacts the
prognosis, and future prognostic scores should include resistance in
algorithms to guide medico-surgical strategies, including DAIR and
SAT indications. In DAIR-treated patients, additional interventions
are needed to improve the success rate, including TDM and SAT,
that are the first options that could be easily implemented. Addi-
tional local antibiotics delivery and phage therapy also need to be
evaluated in this setting. A two-stage exchange is often proposed
for patients with documented MDR Gram-positive PJI, for which a
combination of antibiotics in a spacer is largely used in addition to
systemic antimicrobials. At the time of reimplantation, local de-
livery of antimicrobial with commercially available antibiotic-
loaded cements or coating with a particular hydrogel need to be
evaluated, especially for the prevention of subsequent infection.
The low level of evidence and the complexity of these intertwined
medical and surgical strategies prevent providing more specific
guidance, and all cases must be discussed individually in dedicated
multidisciplinary meetings in expert centres.
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